Online Lithium-Ion Battery Internal Resistance Measurement Application in State-of-Charge Estimation Using the Extended Kalman Filter

نویسندگان

  • Dian Wang
  • Yun Bao
  • Jianjun Shi
چکیده

The lithium-ion battery is a viable power source for hybrid electric vehicles (HEVs) and, more recently, electric vehicles (EVs). Its performance, especially in terms of state of charge (SOC), plays a significant role in the energy management of these vehicles. The extended Kalman filter (EKF) is widely used to estimate online SOC as an efficient estimation algorithm. However, conventional EKF algorithms cannot accurately estimate the difference between individual batteries, which should not be ignored. However, the internal resistance of a battery can represent this difference. Therefore, this work proposes using an EKF with internal resistance measurement based on the conventional algorithm. Lithium-ion battery real-time resistances can help the Kalman filter overcome defects from simplistic battery models. In addition, experimental results show that it is useful to introduce online internal resistance to the estimation of SOC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Identification with Reliability Criterion and State of Charge Estimation Based on a Fuzzy Adaptive Extended Kalman Filter for Lithium-Ion Batteries

In the field of state of charge (SOC) estimation, the Kalman filter has been widely used for many years, although its performance strongly depends on the accuracy of the battery model as well as the noise covariance. The Kalman gain determines the confidence coefficient of the battery model by adjusting the weight of open circuit voltage (OCV) correction, and has a strong correlation with the m...

متن کامل

State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter

Accurate state of charge (SOC) estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF)-based SOC estimati...

متن کامل

An Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries

An accurate state of charge (SOC) estimation is of great importance for the battery management systems of electric vehicles. To improve the accuracy and robustness of SOC estimation, lithium-ion battery SOC is estimated using an adaptive square root unscented Kalman filter (ASRUKF) method. The square roots of the variance matrices of the SOC and noise can be calculated directly by the ASRUKF al...

متن کامل

State of Charge Estimation for Lithium-Ion Battery with a Temperature-Compensated Model

Accurate estimation of the state of charge (SOC) of batteries is crucial in a battery management system. Many studies on battery SOC estimation have been investigated recently. Temperature is an important factor that affects the SOC estimation accuracy while it is still not adequately addressed at present. This paper proposes a SOC estimator based on a new temperature-compensated model with ext...

متن کامل

A Novel Active Online State of Charge Based Balancing Approach for Lithium-Ion Battery Packs during Fast Charging Process in Electric Vehicles

Non-uniformity of Lithium-ion cells in a battery pack is inevitable and has become the bottleneck to the pack capacity, especially in the fast charging process. Therefore, a balancing approach is essentially required. This paper proposes an active online cell balancing approach in a tfast charging process using the state of charge (SOC) as balancing criterion. The goal of this approach is to co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017